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Abstract 
This paper addresses the problem of predicting fun- 

damental performance of vote-based object recognition 
using 2-0 point features. I t  presents Q method f o r  pre- 
dicting Q tight lower bound o n  performance. Unlike 
previous approaches, the proposed method considers 
data-distortion factors, namely uncertainty, occlusion, 
and clutter, in addition to  model similarity, simulta- 
neously. The similarity between every pair of model 
objects i s  captured by comparing their structures as a 
function of the relative transformation between them. 
This information is used along with statistical mod- 
els of the data-distortion factors to  determine an up- 
per bound on the probability of recognition error. This 
bound is directly used to determine a lower bound on 
the probability of correct recognition. The validity of 
the method is experimentally demonstrated using syn- 
thetic aperture radar (SAR) data obtained under dif- 
ferent depression angles and target configurations. 

1 Introduction 
Model-based object recognition is concerned with 

identifying and localizing objects from scene data. It is 
performed by extracting features from the scene data 
and searching for a consistent correspondence between 
scene features and those of a model object. Perfor- 
mance of such a process depends on: 1) distortion of 
the scene data (e.g., sensor noise, missing and spu- 
rious features), 2) nature of the model objects (e.g., 
degree of similarity between objects, object articula- 
tion), and 3) criterion used to  evaluate scene/model 
matches (e.g., number of votes, probabilistic likeli- 
hood). It has been a challenge to model these factors 
in a single approach for performance prediction, which 
is a crucial step for the advancement of the field. 

In this paper, we present a method for predicting a 
tight lower bound on object recognition performance. 

*This work was supported in part by DARPA/AFOSR grant 
F49620-97-1-0184; the contents and information do not reflect 
positions or policies of the U.S. Government. 

We assume that both scene data and model objects 
are represented by 2-D point features. In addition, the 
matching criterion is assumed to be vote-based; i.e., a 
specific object/pose hypothesis is evaluated based on 
the number of model features that are consistent with 
at least a single scene feature. The proposed method 
considers the following: 1) Data-Distortion Factors: 
uncertainty (positional), occlusion (missing features), 
and clutter (spurious features), and 2) Model Factor: 
structural similarity (degree of structural “overlap” 
between pairs of model objects). 

Our performance-prediction problem can be for- 
mally defined as follows. We are given: 1) a set of 
model objects, Dt? = { M z } ,  where each object M i  is 
represented by a set of 2-D point features, { F z j } ,  that 
are discretized at some resolution, 2) statistical models 
for uncertainty, occlusion, and clutter, and 3) a class of 
applicable transformations, 7 (e.g., translation, rigid, 
affine), which is a discretized set since we are dealing 
with discretized features. Our objective is to predict 
a lower bound on the probability-of-correct-recognition 
(PCR), as a function of occlusion and clutter rates, 
assuming a fixed uncertainty model and a vote-based 
matching criterion. Note that recognition involves de- 
termining both object identity and pose. 

The remainder of the paper is organized as follows. 
The next section summarizes related research and our 
contributions. Section 3 presents an overview of the 
method. Modeling of data-distortion factors is out- 
lined in Section 4. Object-similarity issues are dis- 
cussed in Section 5 .  Section 6 presents the derivation 
of a lower bound on PCR. In Section 7, we dernon- 
strate the validity of the proposed method by com- 
paring predicted PCR plots with actual ones. Finally, 
Section 8 provides conclusions. 

2 Related Research 
Traditionally, object recognition performance is 

empirically determined through extensive experimen- 
tation. Formal analysis of performance has not re- 

-380 
0-7695-0149-4/99 $10.00 0 1999 EEE 

http://www.cris.ucr.edu


I 
I 
I 

ceived much attention in the literature. Some re- 
search efforts analyze the problem of discriminating 
objects from random clutter (e.g., [3, 41). Other ef- 
forts address the problem of object recognition perfor- 
mance, considering data uncertainty and object sim- 
ilarity (implicitly) [2], or uncertainty and similarity, 
with partial handling of occlusion [5]. 

The main contribution of this paper i s  the develop- 
ment of a performance-prediction method that simul- 
taneously considers uncertainty, occlusion, clutter and 
object similarity. As mentioned above, previous ap- 
proaches consider only a subset of these factors. The 
performance predicted by our method is fundamental, 
since it is obtained by analyzing the amount of infor- 
mation provided by both scene data and model ob- 
jects, independent of the particular algorithm used for 
vote-based recognition (e.g., alignment, vote accumu- 
lation, tree search). The proposed method is validated 
using synthetic aperture radar (SAR) data obtained 
under different depression angles and target configu- 
rations (variations of the same basic model). 

3 Overview of Our Method 
Figure 1 shows a block diagram of the proposed 

method. Its major components are described below. 
0 Data-Distortion Models: Data distortion factors 
are statistically modeled as follows: 1) Uncertainty: 
the actual location of a scene feature is described by 
a probability mass function (PMF), which is assumed 
to  be uniform. 2) Occlusion: it is assumed to  be uni- 
form, where each subset of features is equally likely to  
be occluded as any other subset that is of the same 
size. 3) Clutter: clutter features are assumed to  be 
uniformly distributed within some area surrounding 
the object. 
0 Computation of Object Similarity: The objec- 

Computation I 
Of 
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tive of this stage is to compute the similarity between 
all pairs of model objects. The similarity of an object, 
M j ,  to another one, M i ,  is defined as the number of 
votes that M j  would get given an “uncertain” version 
of M i ,  as a function of the relative transformations 
between the two objects. Notice that the space of 
relative transformations is defined by the applicable 
transformation class 7. It can be seen that, in ad- 
dition to  structural object overlap, our definition of 
object similarity depends on data uncertainty as well. 
Obviously, this leads to  a probabilistic similarity func- 
tion. The output of this stage is a similarity histogram, 
which accumulates information derived from the sim- 
ilarity functions of all pairs of model objects. 
0 Computation of Performance Bound: The ob- 
jective of this stage is to compute a lower bound on 
PCR. It is obtained by determining an upper bound 
on the probability that votes for any erroneous ob- 
ject/pose hypothesis reach or exceed those for the cor- 
rect hypothesis, given specific levels of data distortion. 
As shown in Figure 1, this stage utilizes both object 
similarity information provided by the previous stage, 
and data-distortion models. 

4 Data-Distortion Models 
In this section, we formally define the three sources 

of data distortion considered in this paper. 
0 Uncertainty: The effect of uncertainty is to per- 
turb positions of object features according to some 
PMF. Since we are assuming uniform distribution, 
this PMF can be represented by an uncertainty re- 
gion, Ru(.). An uncertain version of a model object, 
M i ,  can be represented as 

I 

I 
I 
I 

Du ( M i  R u  (’1 ) = { pu (Ru (Fij 1) 1 
where P,(R) is a function that returns a randomly- 
selected feature within region R. 
0 Occlusion: The effect of occlusion is to eliminate 
some object features. An occluded version of object 
M i  can be represented as follows: 

’Do(Mi, 0) = M i  - %(Mi ,  0) 

I I 
sinulamy lustogram I 

I 

where Po(Mi ,O)  is a function that returns a 
randomly-selected subset of 0 features from Mi.  De- 
velopment of more sophisticated occlusion models that 
capture the spatial dependency among features is a 
subject of future research. 
0 Clutter: The effect of clutter is the addition of spu- 
rious features. We assume that these features are uni- 
formly distributed within a clutter region, R,, which 
can be of an arbitrary shape (e.g., convex hull of ob- 
ject features, bounding box, etc). An ambiguity takes 

I 

I Computation of Performance Bound 

381 

I 
I 



(a) Original object 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ )  

(b) Occluded (0 = 2) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I  

(c) Perturbed 

Figure 2: An example of the distortion process. Notice 
that: 1) R,(-)  is a circle centered at the feature's true 
location, 2) clutter features are shown as crosses, and 
3) there are no clutter features inside the uncertainty 
regions of occluded features (shown in (d)). 

place if a clutter feature happens to fall within the 
uncertainty region of an occluded one, since it can 
not be differentiated from the no-occlusion/no-clutter 
case. In order to resolve this ambiguity, we restrict 
clutter features to lie outside the uncertainty regions 
of occluded ones. Formally, a cluttered version of M i  
can be defined as follows: 

Dc(Mi, C, Rc, Rx) = M i  U 'P,(C, Rc - Rx) 
where Pc(C, R )  is a function that returns C randomly 
generated features within region R. In our context, 
Rx is the union of the uncertainty regions associated 
with the occluded features. 

In general, a distorted version of object M i ,  
Di(R,(.), 0, C, Rc) ,  is obtained by occluding 0 fea- 
tures in M i ,  perturbing unoccluded ones within uncer- 
tainty region Ru(.), and then adding C clutter features 
within clutter region Rc (see Figure 2). Formally, 

Di(Ru(*),O, C, Rc) = 
Dc(Du(Do(Mi1 O ) ,  Ru(*)), C, Rc, Rz)  

where R, = UjR,(Fij), VFij E ( M i  - Do(Miy0)) .  
We refer to Rc - R,, or simply RA, as the effective 
clutter region. 

5 Computation of Object Similarity 
In this section, we formally define a similarity mea- 

sure between model objects, and explain the method 
used to  construct the similarity histogram. 
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Figure 3: An illustration of feature/feature similaxity. 

5.1 Definition of Object Similarity 
We introduce a sequence of definitions that lea,d to  

a quantitative measure of the similarity between a pair 
of model objects. 
0 Feature Consistency: A feature, F,, is said to 
be consistent with another feature, Fj, if Fi can be 
interpreted as an uncertain measurement of Fj.. It 
can be easily seen that the condition for consistency 
in our case is Fi E R,(Fj). 
0 Feature/Feature Similarity: The similarity be- 
tween features Fi and Fj, S f f ( F i ,  Fj),  is defined as 
the probability that an uncertain measurement of F, 
is consistent with Fj. The degree of similarity is pro- 
portional to the extent of overlap between R,(Fi) and 
R,(Fj) (see Figure 3) .  Specifically, 

where A(R) is the area of region R. We refer to  fea- 
ture pairs with overlapping/non-overlapping regions 
as similar/ dissimilar pairs. 
0 Object/Feature Similarity: The similarity be- 
tween a model object, M i ,  and a feature, Fj, 
Soj (Mi ,  Fj),  is defined as the probability that an un- 
certain measurement of any feature in M i  (i.e., a fea- 
ture in D,(Mi,  R, ( . ) ) )  is consistent with Fj. ]?or- 
mally, 

s o / ( M i , F j )  = 1 - n(1 - sff(Fik,Fj))* 
k 

0 Object/Hypothesis Similarity: Let M I  be a hy- 
pothesis of object M j  at pose r E 7 relative to  M i .  
The similarity between M i  and Mj' ,  Soi(Mi, M j ' )  or 
simply S;, can be defined as the number of votes for 
M ;  given D,(Mi ,Ru( . ) ) .  That is, S; is the num- 
ber of features in Mj' that have consistent uncertain 
measurements of features in M i .  Obviously, Si'j is 
a random variable. It can be easily shown that the 
bounds of S; are 

min(sG) = I {Flk : Sof(Mi,F'k) = 1) I 
max(s;) = I {Flk : Sof(Mi,F;,)  > 0 )  1, 



M. 

Figure 4: Similarity between M i  and M J .  Notice 
that S& E [1,3], and E(S&)  M 2. 

and its expected value is 

k 

where F:k E M i .  An example is shown in Figure 
4. The PMF of S$ is approximated by the following 
binomial distribution: 

Prj (s&) = Bs;: (dj; NG, p;) 

where Px(z) = Pr[X = 21, NG = max(S,Tj), 
p7, = E(ST.1 

23 e, B x ( z ; n , p )  = K ( n , z ) p ” ( l  -P)”-”, and 
K(a,b) = + a-b)! b! ’ 

0 Object/Object Similarity: The similarity be- 
tween objects M i  and M j  is simply the ob- 
ject/hypothesis similarity between M i  and M J ,  SG, 
for all possible values of T E 7. Thus, object/object 
similarity can be viewed as a probabilistic function. 
5.2 Construction of Similarity Histogram 

As discussed in the previous section, the similar- 
ity between M i  and M J  is described using two pa- 
rameters, (NG, p;), which define the associated bi- 
nomial distribution. For our purpose of performance 
prediction, two additional parameters are required: 1) 
the size of M i ,  1 M i  1, and 2) the eflectiwe size of 
M i ,  which is simply the number of features that can 
contribute votes to M i .  Potential vote-contributing 
features of Mj‘ are those which lie inside the clut- 
ter region R,, i.e., M J  n R,.l Accordingly, similarity 
information is accumulated in a 4-D histogram. Fig- 
ure 5 shows the algorithm used to build the similarity 
histogram ( S H ) .  Notice that each model object is 
compared with all objects in the model set, includ- 
ing itself. Accordingly, unless there are identical or 
extremely similar model objects, each diagonal entry 
S H ( m ,  m, m, m) will contain the number of model ob- 
jects of size m. This is because the similarity between 

In the implementation, we have also included features of 
MJ outside R, that are similar to features in M ; .  Obviously, 
these similar feature pairs are very close to the boundary of R,. 

Initialize similarity histogram SH 
for each model object M ,  E DB do 

for each model object M ,  E VB do 
for each r E 7 do 

end 
Inc SH(IM,I, IMJ n %I, N;,  [N;P;+$J) by 1 

end 
end 
Set diagonal entries in S H  to 0 

Figure 5: Similarity-computation algorithm. 

an object, M i ,  and a copy of itself (i.e., MP, where 
0 is the origin of 7) is a deterministic value, which is 
I M i  I. For our purposes, we set these diagonal entries 
to 0. 

6 Computation of Performance Bound 
In this section, we determine the number of votes 

for M i  and M 1, given a distorted version of M i ,  and 
derive a lower bound on PCR. 
6.1 Vote Analysis 

Given a distorted version of model object M i ,  
Di(Ru(.) ,  0, C, R,) or simply Vi, it can be easily 
shown that the number of votes for M i  is 

Vi = I M i I - 0 .  (1) 

On the other hand, the number of votes for M J  is a 
random variable, Vj.. In order to simplify the pro- 
cess of estimating the PMF of y, we assume that: 1) 
the uncertainty regions associated with the features of 
each of M i  and Mj‘ are non-overlapping, 2) there is 
a one-to-one correspondence between similar features 
in M i  and Mj’, and 3) the similarity between every 
pair of similar features is the average object/feature 
similarity PG. These assumptions result in a “uni- 
form” view of the similarity between M i  and M i .  As 
an example, Figure 6 illustrates the uniform view of 
similarity corresponding to the object/hypothesis pair 
shown in Figure 4. 

The votes for Mj‘ are obtained from two sources: 1) 
object M i ,  due to similarity, and 2) clutter features, 
due to random coincidence. Accordingly, we can ex- 
press the number of votes for Mj‘, vj‘, as 

v3’ = v, + v, (2) 

where V, and V, are random variables corresponding 
to similarity and clutter votes for Mj‘, respectively. A 
schematic diagram depicting these variables is shown 
in Figure 7. The number of similarity votes (V,) de- 
pends on: l) the number of unoccluded features, N o ,  
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Figure 6: A conceptual view of the uniform similar- 
ity for the object/hypothesis pair shown in Figure 4. 
Notice that feature/feature similarity for each of the 
three similar feature pairs is M I.  

._-- _ _ _ - - - -  
<$Bt-  3- - .- - -  - 

Figure 7: Components of the votes for M i  due to 
similarity (V,) and clutter (V,), given Vi, a distorted 
version of object Mi.  

among the NG features in M i  that are similar to fea- 
tures in M ; ,  and 2) the degree of similarity between 
their features, represented by PG . Accordingly, we can 
express the PMF of V, as 

PV. (Us) = PN,, (no)PV8 (us; n o )  (3) 
no 

where PvS(vs;no) = Pr[Vs = v,; No = no]. From (2) 
and (3), we can express the PMF of vj‘ as 

Pv;(vJ) = 

PN,(%) Pv, (us; no)Pv, (vj‘ - U,; n o ,  v,) (4) 
no US 

where Pv, (v,; no, U,) = Pr[V, = v,; No = no, V, = v,]. 
The PMF of No and the conditional PMF’s of V, 

and V, are determined based on the statistical data- 
distortion models outlined in Section 4, and the uni- 
form model of similarity described at the beginning of 
this section: 
0 PMF of No: Assuming uniform occlusion and sim- 
ilarity models, we can describe No by the following 
hypergeometric distribution: 

P N ~ ( ~ ~ ) = H N , ( N G - ~ , ; O , N G , I  M i  1 -N&) 

where H x ( q n , a , b )  = -).. 
0 Conditional PMF of V,: Based on the assump- 
tions of uniform models for uncertainty and similarity, 
it can be shown that the conditional PMF of V, is rep- 
resented by the following binomial distribution: 

Pv, (us; n o )  = Bv, (vs; 120, p;>. 

0 Conditional PMF of V,: The effective clutter re- 
gion R: can be split into two sub-regions, R& and 
RI. - RLc, such that a clutter feature falling within the 
first (second) sub-region will (will not) result in a vote 
for M I .  Region RLe is the union of uncertainty re- 
gions associated with features in M i  n R, that are not 
already contributing similarity votes. Due to our mod- 
eling of clutter, features in M i  n R, that are similar to 
occluded features in M effectively have ‘truncated” 
uncertainty regions. Under the assumption of uniform 
similarity, it can be shown that: 1) the area of a trun- 
cated uncertainty region is A(R,( . ) ) ( l  - PG), and 2) 
the number of features in M i  n R, with full (trun- 
cated) uncertainty regions is I M j n R ,  I -Y, -N& +no 
(NG - no). Accordingly, the conditional PMF of V, 
can be approximated by the following binomial distri- 
bution: 

where 

A(Rbc)  = A ( & ( . ) ) ( [  Mj’ f l  R, I -V, - pG(NG - no)), 
A(R:) = A(RJ - A(R,( . ) )o .  

6.2 Bounding PCR 

ated with M i  excluding itself. That is, 

Ni = { M J  : V M j  E VB, and V r  E 7) - { M i } .  

The probability of misinterpreting Vi, as any hypoth- 
esis in Ni, can be expressed as 

Pr[Ni;Di] = Pr[3 MJ E Ni such that 2 K]. (6) 

From (1) and (4), we determine the probability that 
votes for Mj‘ reach or exceed those for Mi:  

Let N’i be the set of object/pose hypotheses associ- 

Pr[Mj‘;Vi] = P~;(vj7). (7) 
vj’ 2 [,Mi 1-0 

The probability of misinterpretation, Pr[Ni; Di], can 
be bounded as follows (refer to(6)): 

Pr[N;;Vi] < Pr[MJ;Vi] .  
MJENi 
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The above inequality can be directly used to  deter- 
mine the following lower bound on the probability of 
correctly recognizing M ,, given D%: 

Pr[M,;DD,] > 1 - Pr[Mj;D,]. (8) 
M;EN.  

Next, we calculate a lower bound on average PCR 
for model-object set DB. From the discussion in 
the previous section, it can be observed that V; 
and, in turn, Pr[M;;D,] depend on only four object- 
dependent parameters: the sizes of M, and Mj,  and 
the similarity parameters (Nzj, PG). Let 

W(a,  b, c, d)  = Pr[Mj;  D,], 

such that a =I M, I and b =I M j  1, c = Nzj and 
d = LN: PG + $1. The average PCR for model set DZ? 
can be bounded as follows: 

PCR(DZ3) > 
l-- y SH(% b, c ,  4 W ( %  b, c,  4. 

ID'' a b c d 

7 Experimental Results 
In this section, we validate our performance- 

prediction method in the context of a target recog- 
nition task using SAR images. 
0 Model Data: The selected model database consists 
of three military targets: T72, BMP2 and BTR70. 
Each model target is represented by a number of SAR 
views, which sample its signature at a variety of az- 
imuth angles, at a specific depression angle. Targets 
T72, BMP2 and BTR70 are represented by 231, 233, 
and 233 views, respectively, at depression angle 17". 
Examples of these views, which are obtained from 
the MSTAR public data set, are shown in Figure 8. 
We treat each model view as an independent object. 
Scattering centers, peaks in the image, are the point 
features used for recognition. These features are ex- 
tracted by comparing the value of each pixel with its 
eight neighbors. We have chosen the strongest 30 scat- 
tering centers to  represent both model and test views. 
Since we are considering a fixed number of scattering 
centers, the numbers of occluded and clutter features 
(0 and C) in an image are always the same. The 
space of applicable transformations is 2-D translation 
(discrete) in the image plane [l]. 
0 Test Data: Three sets of test data are selected. The 
first one, set A, is obtained by introducing distortion 
t o  the model views, according to the distortion pro- 
cess described in Section 4. The selected distortion 
parameters are: R,(.) = four-neighbor region, R, = 
convex hull of view features, O/C = 9,10,. . . ,20. For 

a given occlusion/clutter rate, each model view is dis- 
torted four times. Accordingly, the total number of 
test views, for a given O/C, is 4 x 697. The other 
two sets, B and C, are variants of the model set ob- 
tained by changing depression angle (from 17" to 15"), 
and configurations (e.g., different number of fuel bar- 
rels, different flash lights), respectively. It is known 
that these changes can significantly distort the view 
structure. The distortion parameters R,(.) and R, 
are empirically chosen to  be the same as those for test 
set A.  The occlusion/clutter rate for each test view is 
estimated through finding the best match with model 
views within a difference of f 3 "  azimuth angles (if no 
views exist within this range, then the test view is 
matched with the model view that is nearest in az- 
imuth). Sets B and C are of sizes 581 and 464, re- 
spectively. 
0 Results: We compare a predicted lower bound on 
the PCR plot, as a function of occlusion/clutter rate, 
with actual plots corresponding to the three test data 
sets. The actual PCR plots are determined using an 
uncertainty-accommodating recognition system that 
examines all of the relevant 4-D problem space (tar- 
get, azimuth, and translations along the range and 
cross-range directions). Accordingly, its performance 
is optimal. The predicted PCR plot is obtained as de- 
scribed in Section 6 .  Since the shape of R, is object- 
dependent (convex hull of object features), A(&) is 
substituted by the average of clutter-region areas cor- 
responding to views of the model set. Furthermore, 
since the above-mentioned feature-extraction process 
imposes the constraint that features can not be eight- 
neighbors, the conditional clutter-vote PMF (5) is gen- 
eralized to consider such a constraint (see the Ap- 
pendix). Actual and predicted plots for test sets A, 
B and C are shown in Figures 9(a), 9(b) and 9(c), re- 
spectively. From the results obtained, we observe that 
the proposed method succeeds in predicting a tight 
bound on PCR performance. It can also be observed 
that for sets B and C, the predicted PCR bound is 
slightly over-optimistic close to the knee of the plot. 
This is due to  arguably-slight differences between the 
assumed distortion models (including size and shape 
of the clutter region), and the actual ones. Accurate 
determination of these models for a given test data set 
is a subject of future research. 

8 Conclusions 
We have presented a novel method for predicting a 

tight lower bound on performance of vote-based ob- 
ject recognition. Performance is predicted by consid- 
ering uncertainty, occlusion, clutter and object simi- 
larity. The method has been validated by comparing 
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(a) T72 (b) BMP2 (c) BTR70 
Figure 8: Examples of SAR images. 
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experimentally-determined PCR plots with predicted 
bounds using real SAR data. 

Appendix 
The feature-adjacency constraint can be defined us- 

ing a separation region, &(.). For example, if the 
point features used correspond to  image peaks (as in 
our experiments, see Section 7), then no two features 
can be eight neighbors. In such a case, R,(-) is a, 3 x 3 
window centered at the feature's location. Considering 
the feature-adjacency constraint, we can approximate 
the conditional PMF of V, as follows: 

where 

L(R,n) = 

A(R:) = 

Note that if A(& (.)) = 0, then the above distribution 
will reduce to the binomial distribution defined in (5). 
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